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example like the STU model. For attractors with D0 − D4 brane charges, determining

stability requires expanding the effective potential to quartic order in the massless fields.

We obtain the full set of these terms. For attractors with D0 − D6 brane charges, we

find that there is a moduli space of solutions and the resulting attractors are stable. Our

analysis is restricted to the two derivative action.
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1. Introduction and overview

Supersymmetric black holes are well known to exhibit the attractor phenomenon. This was

first observed in [1] and subsequently explored in several papers, for example, [2 – 8]. More

recently the study of non-supersymmetric extremal black holes has gained prominence and

it has been realised that these black holes are also attractors. Early investigations were car-

ried out in, [6, 5]. Sufficient conditions for the existence of a stable attractor were discussed

in terms of an effective potential in [9]. A black hole entropy function was formulated which

allows higher derivative corrections to also be included in [10]. Subsequent investigations

include [11 – 43].

In particular, of particular relevance to this note, is the investigation carried out in [14],

where non-supersymmetric extremal black holes in Type IIA string theory compactified on

a Calabi-Yau three-fold were analysed. An attractor corresponds to a critical point of the

effective potential. For the attractor to be stable, the critical point must be a minimum of

the effective potential. Flat directions are allowed, but the extremum cannot be a maximum

along any direction of moduli space. For the non-supersymmetric extrema found in [14],

it was noticed that the mass matrix, which governs the quadratic fluctuations about the

extremum, has zero eigen values.1 Thus it is necessary to expand the effective potential

1In general hypermultiplets are not sourced by the gauge fields and will be flat directions of the effective

potential in the two derivative approximation. The massless fields referred to here arise from the vector

multiplets and can be lifted by corrections beyond the quadratic order even in the two derivative theory.
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beyond quadratic order to determine whether the extrema are minima or maxima along

the massless directions, or whether these directions are exactly flat. While straightforward

in principle, this procedure is algebraically quite involved in practice. The purpose of this

note is to show that the required algebraic manipulations can be considerably simplified

by using group theoretic considerations. We find that these considerations determine the

general form of the terms which can arise at the cubic, quartic etc levels upto coefficients.

The coefficients can then be determined by carrying out the calculations in a simple model

like the STU model.

This note is organised as follows. After some preliminaries, we first illustrate the above

procedure by considering the case of a black hole which carries D0,D4 -brane charges and

show how the mass matrix and quartic terms can be determined by a comparison with the

STU case. This analysis also extends quite directly to the case of a black hole carrying,

D0,D2,D4 charges. Next, we consider black holes which carry D6 brane charge. We

show in general that there is a moduli space of solutions in the D0-D6 system and the

resulting attractor is stable. For the D0 − D4 − D6 case we argue that no terms cubic

in the fluctuations can appear, again by a comparison with the STU case. Throughout

we work in the two derivative approximation, so our results are applicable to “big” black

holes.

Our analysis corrects some errors in earlier work in [14]. In particular the quadratic

terms were not completely determined therein and it was incorrectly argued that for the

D0 − D4 − D6 case a cubic term is present which renders the attractor unstable.

There are several open questions worth investigating further. The quartic correction

in the D0 − D4 case - which is the first correction along the massless directions - has an

interesting structure and consists of two terms with opposite signs. Both terms depend

on the triple intersection numbers of the Calabi Yau manifold and the charges carried by

the black hole. It is interesting to explore whether the stable or unstable nature of the

attractor can vary as this data is changed. We briefly discuss a model which illustrates

this possibility towards the end of our discussion of the D0 − D4 system. In the more

general case, of a black hole which carries D0 − D4 − D6 charge, symmetries again allow

the same two terms at the quartic order. It should again be a straightforward exercise to

determine the coefficients by comparing, say against the STU model, but we have not done

so here. Finally, an interesting general issue is the inclusion of higher derivative corrections

and how they alter the required conditions for the existence of a stable attractor. These

terms should be particularly important for the flat directions of the two-derivative effective

potential and for the directions which are not flat but which have vanishing quadratic

terms.

2. Some preliminaries

Type IIA string theory compactified on a CY 3 has N = 2 supersymmetry. Moduli in

the resulting low-energy theory lie in vector multiplets and hypermultiplets. The vector

multiplet moduli couple to the gauge fields and are fixed by the attractor mechanism.

The low-energy dynamics for the vector multiplets is determined by a prepotential. If the
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Calabi-Yau manifold has h(1, 1) = N , there are N vector multiplets and N +1 gauge fields

in the low-energy theory. The prepotential (neglecting any α′ corrections) is,

F = Dabc
XaXbXc

X0
. (2.1)

Here X0,Xa, a = 1, · · ·N are the projective coordinates of special geometry, and Dabc are

the triple intersection numbers.

The Kahler potential is given by,

K = − ln

[

i

N
∑

A=0

(

XA∗∂AF − XA(∂AF )∗
)

]

. (2.2)

We will use the notation,

xa =
Xa

X0
, (2.3)

in what follows, and use the projective invariance to set X0 = 1. This gives a Kahler

potential,

K = − ln
(

−iDabc(x
a − x̄a)(xb − x̄b)(xc − x̄c)

)

. (2.4)

A superpotential can be defined, it depends on the charges carried by the black hole. Let

Σa, a = 1, · · ·N and Σ̂a be a basis of 4-cycles and 2-cycles of the CY3, and consider a

general black hole carrying (q0, qa, p
a, p0) units of D0 − D2 − D4 − D6 brane charge. The

superpotential is then given by,

W = q0X
0 + qaX

a − pa∂aF − p0∂0F . (2.5)

In the gauge X0 = 1 this becomes,

W = q0 + qax
a − 3Dabcx

axbpc + p0Dabcx
axbxc . (2.6)

In the discussion which follows, we use the notation,

Dab ≡ Dabcp
c, Da ≡ Dabcp

bpc, D ≡ Dabcp
apbpc. (2.7)

The effective potential, which determines the existence of an attractor is given in terms

of the superpotential and the Kahler potential by,

Veff = eK
[

gab̄∇aW (∇bW )∗ + |W |2
]

, (2.8)

where gab̄ = ∂a∂b̄K, gab̄ is the inverse of gab̄ and ∇aW = ∂aW + ∂aKW .

For an attractor to exists Veff must have an extremum. If this extremum is a minimum,

the attractor is stable. The extrema of this effective potential were analysed in [14]. For

the D0 − D2 − D4 system the extremum is given at xa = xa
0 where by,

xa
0 = ipa

√

q̂0

D
+

1

6
Dabqb , (2.9)
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in the supersymmetric case and,

xa
0 = ipa

√

−q̂0

D
+

1

6
Dabqb , (2.10)

in the non-susy case. Here,

q̂0 ≡ q0 +
1

12
Dabq

aqb . (2.11)

The entropy of the non-supersymmetric extremal black hole is,

S = 2π
√

−Dq̂0 . (2.12)

For the D0 − D4 − D6 system the non-susy extremum is given by,

xa
0 = pa(t1 + it2), (2.13)

where t1, t2 are determined by the charges and given in eq. (63,64) of section 3.3 in [14].

The entropy of the non-supersymmetric extremal black hole is,

S = π
√

(p0)2q2
0 − 4Dq0. (2.14)

To determine whether the attractor is stable we now expand about the extremum. Let

us define the fluctuations, δξa, δya, as

xa = xa
0 + δxa ≡ xa

0 + δξa + iδya. (2.15)

For the D0 − D4 − D6 system, with no D2-brane charge, the terms quadratic in the

fluctuations take the form,2

Squadr = ∂a∂d̄V (δξaδξd + δyaδyd) + Re(∂a∂dV )(δξaδξd − δyaδyd) − 2Im(∂a∂dV )δyaδξd .

(2.16)

(Note this corrects some typos of factors of two in eq. (117) of [14]).

The mass matrix can then be read off and takes the form,3,

M = E

(

3
DaDd

D
− Dad

)

⊗ I + Dab ⊗ (Aσ3 − Bσ1). (2.17)

In appendix A.1 we give the values of the coefficients, E,A,B. The mass matrix in eq. (2.17)

is written in a tensor product notation. The labels, a, d take values, 1, · · ·N . The I, σ3, σ1

matrices act in the 2× 2 space labeled by (δξa, δya), for fixed a, while Dab,DaDb matrices

act in the N × N space labeled by the indices, a, b.

2When the D6-brane charge vanishes the D2-brane charge can be included in a straightforward manner
3Our conventions are that the quadratic terms are given by,

Squadr =
1

2
MABφAφB,

where φA, φB denote all fluctuating fields.,Tripathy:2005qp
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As was analysed in [14] the mass matrix has N + 1 positive eigenvalues4 and N − 1

zero eigenvalues. The zero eigenvectors correspond to fluctuations of the type, xa − xa
0 =

(cos θ + i sin θ)za, where the za’s satisfies the relation, Daz
a = 0, and θ is defined by,

cot θ =
B

A − E
. (2.18)

For the D0 − D4 system in particular, θ → 0 and the massless modes consist purely

of the real parts of the fluctuations, δξa, subject to the constraint, Daδξ
a = 0.

We now turn to some group theory. Let A ∈ GL(N,R), be a N ×N matrix which acts

on the xa variables, as

xa → Aa
bx

b. (2.19)

If we also transform the charges, and Dabc, as follows,

qa → qb(A
−1)ba

pa → Aa
bp

b

Dabc → Ddef (A−1)da(A
−1)eb(A

−1)fc , (2.20)

then we see from eq. (2.4), eq. (2.6) that the Kahler potential and the superpotential and

thus Veff are all left invariant. This is the central observation which will aid our discussion

of the corrections to the effective potential.

The STU model is obtained from a consistent truncation of Type IIA on K3× T 2 (or

Heterotic Theory on T 6). It consists of three vector multiplets, N = 3, and a prepotential:

F = −
X1X2X3

X0
. (2.21)

This means D123 = −1
6 and all the other non-zero components of Dabc are related to this

one by symmetries.

3. The D0 − D4 system

We will now consider the D0−D4 system in more detail. Our main goal will be to use group

theory considerations and determine the quadratic terms along the massless directions of

the effective potential. D2 brane charge can be included in the analysis in a straightforward

manner, but we will not do so here.

The extremum value for non-susy attractor is given by setting qa = 0 in eq. (2.10) to

be,

xa
0 = ipa

√

−q0

D
. (3.1)

4We are assuming here that the attractor values correspond to a non-singular point in the moduli space,

for which the moduli space metric is non-singular.
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3.1 Mass matrix and group theory

The mass matrix was determined in [14] by a direct calculation, and was discussed above.

Here we will see that group theory allows this calculation to be carried out much more sim-

ply. The non-supersymmetric extremum is given by, eq. (3.1). The most general quadratic

fluctuations take the form,

Vquadr =

(

C1Dab + C2
DaDb

D

)

δξaδξb +

(

C3Dab + C4
DaDb

D

)

δyaδyb

+

(

C5Dab + C6
DaDb

D

)

δξaδyb . (3.2)

The coefficients Ci can depend on q0, and D ≡ Dabcp
apbpc, which are the two invariants

made out of the charges, under the transformation eq. (2.20).

For the D0 − D4 case the effective potential has a symmetry which is useful to bear

in mind. It is invariant under the transformation, xa ↔ −x̄a. Clearly the Kahler potential

in invariant under this transformation, and therefore so is the metric, gab̄. Since the

superpotential is quadratic in the xa fields, this transformation takes, W → W̄ , and ∇a →

−∇ā, leaving the effective potential invariant. Furthermore, since the extremum value,

eq. (3.1), is purely imaginary, this symmetry is unbroken. Now under this symmetry,

δξa → −δξa and δya is left invariant. Thus when expanding Veff around the extremum no

term which contains odd powers of δξa can appear. This means that C5, C6 must vanish.

We will now obtain the remaining coefficients in eq. (3.2) by comparing with the STU

model. For this purpose it is enough to take the 3 D4-brane charges in the STU model to

be all equal, pa = p, a = 1, · · · 3. The quadratic terms, eq. (3.2), for the STU model with

these charges then become,

Vquadr = −
p

3
C1

(

δξ1δξ2 + δξ2δξ3 + δξ3δξ1
)

−
p

9
C2

(

δξ1 + δξ2 + δξ3
)2

−
p

3
C3

(

δy1δy2 + δy2δy3 + δy3δy1
)

−
p

9
C4

(

δy1 + δy2 + δy3
)2

. (3.3)

Now we directly compute the quadratic terms in the STU model. The effective poten-

tial is given by,

Veff = −
i

(x1 − x̄1)(x2 − x̄2)(x3 − x̄3)
f(x, x̄) , (3.4)

where the function f(x, x̄) is,

f(x, x̄) =
[

4q2
0 + 2pq0

(

x1x2 + x2x3 + x3x1 + x1x̄2 + x2x̄3 + x3x̄1 + c.c.
)

+p2
{

4
(

|x1x2|2 + |x2x3|2 + |x3x1|2
)

+ 2|x1|2(x2 + x̄2)(x3 + x̄3)

+ 2|x2|2(x3 + x̄3)(x1 + x̄1) + 2|x3|2(x1 + x̄1)(x2 + x̄2)
}]

. (3.5)

Here ‘c.c.’ denotes the complex conjugation of all the terms inside the parenthesis. At the

extremum, xa = x0, a = 1, · · · 3, where,

x0 = ip

√

−q0

D
. (3.6)
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Expanding about the extremum, we get the quadratic terms to be

Vquadra =
p2

|x0|

(

(

δξ1 + δξ2 + δξ3
)2

+
(

δy1 + δy2 + δy3
)2

− 2
(

δy1δy2 + δy2δy3 + δy3δy1
)

)

.

(3.7)

Comparing, eq. (3.7) and eq. (3.3) we then get that

C1 = 0 , C2 = −9

√

−D

q0
, C3 = 6

√

−D

q0
, C4 = −9

√

−D

q0
. (3.8)

It is easy to see that this is in agreement with the answer obtained in [14] for the D0-D4

case, eq. (2.17).

3.2 Quartic terms

We see from the calculation above that since C1 vanishes there are N − 1 massless modes

for the D0−D4 system on a general CY3 (N = 3 in the STU model). These correspond to

fluctuations of the real parts, δξa, subject to the constraint that Daδξ
a = 0. The remaining

modes are all heavy with positive mass. To determine if the attractor is stable we need to

find the leading corrections along the massless directions. The general symmetry argument

discussed above for the D0−D4 case tells us that there are no cubic terms in the δξa fields so

we must go to quartic order. This makes the resulting calculation somewhat complicated.

In particular we will need to keep terms which are both quartic in the massless degrees

of freedom, and terms which are cubic involving both the massive and massless degrees of

freedom. The latter, after solving for the massive fields in terms of the massless ones, will

generate additional terms that are quartic in the massless variables.

To understand this better consider a simple model with one massive field Φ and one

massless field φ. The potential around the extremum is

V = V0 +
1

2
M2Φ2 + λ1φ

2Φ + λ2φ
4 . (3.9)

Now solving for the massive field in terms of the massless one and substituting back in the

potential gives, a quartic potential in φ of the form:

Vquartic =

(

λ2 −
λ2

1

2M2

)

φ4 . (3.10)

We see that cubic term in eq. (3.9) has given rise to an additional quartic term in eq. (3.10).

In the D0 − D4 system the terms which are quartic to begin with in the light fields

(analogue of the λ2φ
4 terms in eq. (3.9)) were calculated in [14] and are,

Vquartic1 = −
9

2D

(

−D

q0

)
3
2 (

Dabδξ
aδξb

)2
. (3.11)

(More correctly we need to evaluate this term subject to the constraint that Daδξ
a = 0 to

get the quartic terms along the massless directions.) However, the terms which originate

from cubic terms involving the heavy fields were left out in the analysis in [14]. We turn

to determining these next.
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Since the massless fields arise from δξa, we are interested in cubic terms involving

either two δξa’s and one δya, or three δξa’s. However the latter vanish due the symmetry

which prevents odd powers of δξa from appearing. The most general terms involving two

δξa’s and one δya, from group theoretical considerations must take the form,

Vcubic =
1

q0

(

C1DDabc + C2DabDc + C3DaDbc + C4
DaDbDc

D

)

δξaδξbδyc . (3.12)

At first it might seem that other terms can also appear. For example, a term of the

type,

DabDabcDdeδξ
cδξdδye ,

is allowed by the symmetries. However in this term the Dab tensor is fully contracted with

Dabc, and one can see that such a term cannot arise when expanding Veff . Dab can only

appear through gab̄ in the potential. But, since gab̄ appears in the term gab̄∇aW∇bW of

the potential, and the Dabc tensor would have to arise either from DaW or from DbW , it

cannot be fully contracted with Dab. A similar argument also rules out other possible terms

from appearing. Thus eq. (3.12) is the most general cubic term containing two massless

and one massive field.

Now, to determine the coefficients Ci, we compare with STU model. Once again we

choose pa = p, a = 1, · · · 3. As discussed in appendix A.2 one finds that:

C1 = 3 , C2 = −9 , C3 = 18 , C4 = 27 . (3.13)

We can now solve for the massive modes and obtain the quartic terms for the massless

fields. Since the massless directions correspond to the δξa fields, subject to the constraint

that Daδξ
a = 0, we need only keep the first two terms in eq. (3.12), with coefficients

proportional to C1, C2. Instead of solving for all the heavy fields we will here only solve for

the δya fields in terms of the δξa fields. We will then need to restrict the fluctuations in

δξa to satisfy the constraint Daδξ
a = 0, to get the final quartic terms along the massless

directions.

Setting D6-brane charge, p0 = 0, in eq. (2.17) we see that the δya fields have a mass

term,

Vmass =
1

2
Mabδy

aδyb = E

(

3DaDb

D
− 2Dab

)

δyaδyb . (3.14)

As discussed in appendix A.2 solving for δya in terms of δξa then gives a quartic term,

Vquartic2 = −
3

8

(

−D

q0

)3/2
(

DabDalmδξlδξmDbpqδξ
pδξq

)

+

(

27

8D

)(

−D

q0

)3/2
(

Dlmδξlδξm
)2

.

(3.15)

Combining, eq. (3.11), eq. (3.15) we then get the full quartic contribution to be,

Vquartic = −
3

8

(

−D

q0

)3/2
(

DabDalmδξlδξmDbpqδξ
pδξq

)

−
9

8D

(

−D

q0

)3/2
(

Dabδξ
aδξb

)2
.

(3.16)
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It is important to again emphasise that in the above expression we must constrain

the δxa fields to satisfy the constraint Daδξ
a = 0, in order to get the required quartic

contribution along the massless directions.

It is also useful to rewrite eq. (3.16) as follows. The metric on the vector multiplet

moduli space at the extremum, eq. (3.1), is given by,

gab̄ ≡ ∂a∂b̄K|xa=x0
= −

3

2Dq0

(

3

2
DaDb − DDab

)

. (3.17)

Inverting this, we get the relation,

Dab =
3

D
papb +

3

2q0
gab̄. (3.18)

Substituting in eq. (3.16) gives,

Vquartic =
9

4D

(

−D

q0

)3/2 [

−
(

Dlmδξlδξm
)2

+
1

4

(

−D

q0

)

(

gab̄DalmδξlδξmDbpqδξ
pδξq

)

]

.

(3.19)

Now for a non-supersymmetric attractor (−D
q0

) > 0, and for a solution where the attractor

value is non-singular, gab̄ is non-degenerate with positive eigenvalues, thus we see that

the two terms within the square brackets come with a relative opposite sign. If the net

resultant contribution is positive the attractor is stable, else it is unstable. In some cases,

and we will see an example of this shortly, the two terms can cancel against each other

identically.

Let us close this section on the D0−D4 system with some more comments on the STU

model. In this case D123 = −1
6 , and all other non-zero components of Dabc are related to

it by symmetries. Setting all the pa’s equal,5 pa = p, a = 1 · · · 3, and evaluating eq. (3.16)

one gets,

Vquartic =
1

4p
[(δξ1δξ2 + δξ2δξ3 + δξ1δξ3)2 − {(δξ1δξ2)2 + (δξ2δξ3)2 + (δξ1δξ3)2}]. (3.20)

Recall that for the quartic terms of the massless fields alone, we need to evaluate this

expression after imposing the constraint, Daδξ
a = 0. For the STU model this takes the

form,

δξ1 + δξ2 + δξ3 = 0. (3.21)

On imposing this conditions among the δξa fields in eq. (3.20) one finds that the quartic

term identically vanishes.

In fact one can show that the two massless directions for the STU model are exactly

flat directions of the effective potential. Let xa
0 = ξa

0 + iya
0 denote the critical value for

the field xa. Now, solving for the general non-susy critical point of the effective action,

eq. (3.4), one finds that ξa, ya must satisfy the four equations,

q0 − p(ξa 2 + ya 2) = 0, a = 1, 2, 3

q0

∑

a

ξa + p
∏

a

ξa = 0 (3.22)

5This entails no loss of generality since the pa’s can be bought to this form by rescaling the xa’s.
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These four equations admit a 2 real dimensional moduli space of solutions. The moduli

space can be parametrised by the real parts, ξa, subject to the constraint q0
∑

a ξa +

p
∏

a ξa = 0. At the linearised level this constraint takes the form,
∑

a ξa = 0. This agrees

with the constraint, Daδξ
a = 0, we found earlier that the massless fields had to satisfy at

the quadratic level. We will see in the next section that the existence of these flat directions

for the STU model follows from duality and the existence of flat directions for the D0−D6

system in general.

At we have pointed out earlier, the quartic terms can make the attractor either stable or

unstable. In the following we demonstrate it by considering an explicit example. Consider

the model [46] with a prepotential: F = (aX13
− X1X2X3)/X0. In this case, it is quite

straightforward to compute the quartic term. We again take pa = p, 1 · · · 3, then, D =

p3(a − 1), and for a non-susy attractor to exist, (−D
q0

) = p3(1−a)
q0

> 0. Now denote δξa,

subjected to the constraint Daδξ
a = 0, to be the massless directions. We find, on solving

for δξ3 in terms of δξ1, δξ2 that,

Vquartic =
a

2(1 + 3a)

p2

q0

(

−D

q0

)1/2
(

δξ1 − δξ2
)2 (

(3a − 2)δξ1 − δξ2
)2

. (3.23)

It can be seen that the quartic term diverges for a = −1/3. For all other a it has one flat

direction and one other linearly independent direction which becomes stable or unstable

depending on the values of q0, a, p. For example, if 0 < a < 1 and p, q0 > 0, the attractor

is stable, while if p, q0 < 0, it is unstable. If on the other hand, −1
3 < a < 0, and p, q0 > 0,

the attractor is unstable, while if p, q0 < 0, it is stable. This example illustrates that the

quartic terms have considerable structure in them, we will leave a more detailed study of

these terms and their implications for the future.

4. Adding D6 branes

We now turn to considering black holes which carry D6-brane charge. First we consider

the D0 − D6 system and then discuss the case with D0 − D4 − D6 brane charges.

4.1 The D0 − D6 attractor

A black hole with D0 − D6 brane charges breaks supersymmetry. Here we show that the

effective potential at the supersymmetry breaking extremum has flat directions.

A non-susy extremum for the case with D0−D4−D6 brane charges was given above

in eq. (2.13), eq. (A.2), eq. (A.3). From there we can obtain a solution for the D0−D6 case

by taking a limit where the D4 brane charge goes to zero. Some care must be exercised in

taking this limit. Let us start with the D0−D4−D6 charges chosen so that we are in the

branch where, s/p0 > 1. This means D/q0 < 0. Now we take the limit of vanishing D4

brane charge by scaling all the pa’s to go to zero at the same rate, i.e. we take pa → λpa

and take the limit as λ → 0. In this limit it is easy to see that t1 → 2
|p0|

, and since

the real part, ξa = pat1, and pa goes to zero, we find that ξa → 0. On the other hand,

– 10 –
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t2 →
(

q0

−D

)
1
3
(

1
|p0|

)
1
3
, this means the imaginary part,

ya = pat2 = pa

(

q0

−D|p0|

)
1
3

, (4.1)

stays finite in this limit, since |D|1/3 goes to zero at the same rate as pa goes to zero. From

eq. (4.1) we see that the resulting values for the ya’s satisfy the equation,6

Dabcy
aybyc = −

∣

∣

∣

∣

q0

p0

∣

∣

∣

∣

. (4.2)

So we see that by setting the ξa fields to zero and choosing any set of ya’s which satisfies

the relation eq. (4.2) we get an extremum of the effective potential for the D0 − D6 case.

This means there is a moduli space of non-susy solutions for the attractor equations in

the D0 − D6 case. For a CY3 with N vector multiplets the moduli space is N − 1 real

dimensional.

One can also directly analyse the conditions for an extremum of the effective potential

in the 0 − 6 case. This leads to the same result, that any choice of ξa, ya where ξa = 0

and ya satisfies the constraint, eq. (4.2) extremises the entropy function. Some steps are

indicated in appendix A.3. For the specific case of the STU model one can go further and

show that these are in fact all the solutions to the attractor conditions.

Expanding around any non-singular point in this moduli space, the general analysis of

the mass matrix in [14] shows that all the N + 1 massive fields (which are the real fields ξa

and one combination of the ya’s) have a positive mass. We have seen above that the N − 1

massless fields correspond to flat directions and thus are not lifted at cubic or higher order

in the expansion around the critical point. Thus the solutions we have found are stable

attractors.

One more comment is worth making. For the STU model N = 3, so there are two

exactly flat directions in this case when the black hole carries D0 − D6 brane charges.

This agrees with the number of flat directions we had found for this model in the D0−D4

case. The agreement in fact follows from duality. The STU model corresponds to taking

Type IIA on K3 × T 2. The duality group is O(6, 22) × SL(2). There is only one duality

invariant, the entropy of the black hole.7 This means a black hole with D0−D6 charges can

be turned after duality transformation into a D0 − D4 black hole with the same entropy.

Thus duality tells us that the number of flat direction of the effective potential in the two

cases needed to match. More generally using duality one can relate the D0 − D6 black

hole in the STU model to a D0−D2−D4−D6 black hole. Thus the non-susy extremum

of the effective potential must have two exactly flat directions in this more general case as

well.

6The attractor value for the volume of the CY3 in the D0−D4−D6 system we start with is proportional

to V ∝ −Dt32. Thus D < 0. Since we are also working with charges for which D/q0 < 0 this means q0 > 0.
7Since we are dealing with the two derivative action we can take the duality groups to be valued in

Reals. More generally the duality groups are valued in Integers and there are extra invariants.
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4.2 The D0 − D4 − D6 black hole

Finally let us consider a black hole which carries D0 − D4 − D6 brane charges. From the

discussion in section 2 we know that for the non-supersymmetric extremum there are N −1

massless directions. In the D0−D4 case the effective potential has a symmetry under the

exchange, xa ↔ −x̄a, This symmetry is now broken by the terms in the superpotential

dependent on the D6 brane charge, p0. Thus there is no direct argument which says

that odd powers of the massless fields cannot appear in the expansion about the non-

supersymmetric extremum.

We are interested in the higher order corrections along the massless directions in order

to decide if the attractor is stable. The first correction which is now allowed by the

symmetries is cubic in the massless fields. Along the massless directions we can write

xa−xa
0 = (cos θ+i sin θ)αa, where the angle θ was defined in eq. (2.18), and the αa’s satisfy

the constraint, Daα
a = 0. Group theory considerations tell us that the most general cubic

term along the massless directions must take the form,

Vcubic = CDabcα
aαbαc (4.3)

The coefficient C can depend on q0, p
0 and D = Dabcp

apbpc, which are the three invariants

under the GL(N,R) transformation, eq. (2.19), eq. (2.20), that can be made from the

charges and the intersection numbers. Therefore by calculating C in the STU model and

expressing the answer in terms of q0, p
0 and D, we can obtain the value of the cubic term

in general.

In fact, we already know from the duality argument given at the end of the last

subsection that the two massless directions in the D0 − D4 − D6 case for the STU model

must be exactly flat and thus no cubic term can appear in the STU model. This means

that C must identically vanish as a function of q0, p
0,D, and thus there will be no cubic

term for the case of a general Calabi-Yau compactification.

For good measure we have checked this conclusion by directly calculating the cubic

term in the STU model.8 We have found that the cubic term does indeed vanish. We have

also carried out an analytic calculation to first order in p0 and found that once again the

cubic term vanishes.

These considerations correct the earlier results reported in [14] where it was stated

that the cubic term is in fact non-vanishing.

Since the cubic term vanishes one must now go to the quartic order. Once again group

theory tells us that only two terms can appear. These have the same tensor structure as in

the D0−D4 case eq. (3.16), with the δξa fields now being replaced by the αa fields which

(after imposing the constraint Daα
a = 0 ) are the massless directions. The coefficients can

be obtained by a comparison with the STU model. We know from duality, as has been

argued above, that in this case the massless directions are flat, so that no quartic term can

appear either. This imposes one relation between the two coefficients of the quartic terms.

8This calculation was carried out using Mathematica.
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The allowed quartic terms then take the form,

Vquart = C1

[

Dab(Dalmαmαn)(Dbpqα
pαq) +

3

D
(Dabα

aαb)2
]

. (4.4)

The coefficient C1 can be obtained by a direct calculation in the STU model. This calcu-

lation is straightforward in principle, but we do not carry it out here and leave it for the

future. One thing can be said, since we know that the massless directions are exactly flat

in the D0 − D6 system, C1 must vanish in the limit when the D4 brane charge vanishes,

and more generally when, D
(p0)2q0

→ 0.
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A. Some more details

In this appendix we give some more details regarding the non-susy extrema in the D0 −

D4 − D6 case. These results are taken from [14].

In the D0−D4−D6 case the non-susy extremum is located at, xa = xa
0 = pa(t1 + it2).

The values of t1, t2 are determined by the charges. There are in fact two branches for the

solution. It is useful to define a variable s > 0 given by,

s =

√

(p0)2 −
4D

q0
. (A.1)

The two branches correspond to |s/p0| < 1 and |s/p0| > 1 respectively. t1 is given by

t1 =























2
s

„

1+ p0

s

«1/3

−

„

1− p0

s

«1/3

“

1+ p0

s

”4/3

+
“

1− p0

s

”4/3 | s
p0 | > 1

2
p0

“

1− s
p0

”1/3

+
“

1+ s
p0

”1/3

“

1− s
p0

”4/3

+
“

1+ s
p0

”4/3 | s
p0 | < 1

(A.2)

and t2 by:

t2 =

{ 4s
(s2−(p0)2)1/3((s+p0)4/3+(s−p0)4/3)

| s
p0 | > 1

4s
((p0)2−s2)1/3((|p0|+s)4/3+(|p0|−s)4/3)

| s
p0 | < 1

(A.3)
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In these expressions the branch cuts are chosen so that all fractional powers are real.

The mass matrix for quadratic fluctuations was given in eq. (2.17). In this formula,

E = 12DeK0

(

Y 2
1 +

1

D2t22
X2

1

)

A = 12DeK0

(

1

D2t22
X2

2 − Y 2
2 − 2Y1Y2

)

B = 24DeK0
(X2 − X1)

Dt2
Y2, (A.4)

with,

X1 = q0 + 3Dt22(1 − p0t1) − Dt21(3 − p0t1)

X2 = q0 − Dt22(1 − p0t1) − Dt21(3 − p0t1)

Y1 = −p0t22 − 3t1(2 − p0t1)

Y2 = −p0t22 + t1(2 − p0t1). (A.5)

Here K0 is the Kahler potential evaluated on the solution, eq. (2.4), and t1, t2 are as given

above.

B. Determining the cubic and quartic terms

In this appendix we give some more details of the steps leading to the determination of the

quartic terms as discussed in section 3.2

First we begin with cubic term involving two massless and one massive field. The

general structure of such terms is given in eq. (3.12). Evaluating this expression for the

STU model, with pa = p, we get,

V STU
cubic =

(

C1p
3

3q0

)

(δy1δξ2δξ3 + δy2δξ1δξ3 + δy3δξ1δξ2)

+

(

C2p
3

9q0

)

(δξ1δξ2 + δξ1δξ3 + δξ2δξ3)
(

δy1 + δy2 + δy3
)

+

(

C3p
3

18q0

)

(δy1(δξ2 + δξ3) + δy2(δξ1 + δξ3) + δy3(δξ2 + δξ1))(δξ1 + δξ2 + δξ3)

−

(

C4p
3

27q0

)

(δy1 + δy2 + δy3)(δξ1 + δξ2 + δξ3)2. (B.1)

The effective potential for the STU model was given in eq. (3.4) and eq. (3.5). Ex-

panding this directly gives,

V STU
cubic =

(

p3

2q0

)

[

−4{δy1δξ1(δξ2+δξ3)+δy2δξ2(δξ1+δξ3)+δy3δx3(δξ1+δξ2)} (B.2)

− 2{δy1(δξ1)2 + δy2(δξ2)2 + δy3(δξ3)2}
]

.

Equating coefficients, gives the result, eq. (3.13).
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To obtain the quartic terms we need to solve for the δya fields in terms of the δξa

fields. From the cubic terms,

V =
1

q0
(C1DDabc + C2DabDc) δyaδξbδξc , (B.3)

and the mass terms, eq. (3.14), we get that,

δya = −Mab

[

C1D

q0
Dbcdδξ

cδξd +
C2

q0
DbDcdδξ

cδξd

]

. (B.4)

Here Mab is the inverse of the mass matrix, eq. (3.14), and is given by,

Mab =
1

2E

(

3

D
papb − Dab

)

. (B.5)

Substituting eq. (B.4) for δya in the cubic terms, eq. (B.3), then gives the contribution to

the quartic term for the light fields, eq. (3.15).

C. The D0 − D6 system

Here we present some more details in the analysis for the D0−D6 case, showing that there

is a moduli space of solutions to the extremum conditions of the effective potential. The

superpotential in this case is given by,

W = q0 + p0Dabcx
axbxc (C.1)

For the STU model it is easy to see that if xa
0 is a solution to the attractor equations, then

so is λaxa
0, where the λa’s satisfy the condition, λ1λ2λ3 = 1. Using this fact we can set the

three xa
0’s to be equal, xa = x0, a = 1 · · · 3. Putting this ansatz into the effective potential

and solving for x0 one finds that the only solution is of the form, x0 = iy, with, y3 = | q0

p0 |.

More generally then a solution to the attractor conditions takes the form,

Dabcy
aybyc ≡ −y1y2y3 = −|

q0

p0
|. (C.2)

For a general CY3 we have

Veff = eK |W |2
[

M

6

(

Mab−
3(xa−xa)(xb−xb)

M

)

(

−
3Ma

M
+

∂aW

W

)(

3Mb

M
+

∂bW

W

)

+1

]

,

(C.3)

where,

Mab = Dabc(x
c − xc)

Ma = Dabc(x
c − xc)(xb − xb)

M = Dabc(x
a − xa)(xb − xb)(xc − xc)

gab =
3

M

(

2Mab −
3

M
MaMb

)

gab =
M

6

(

Mab −
3(xa − xa)(xb − xb)

M

)

. (C.4)
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Setting the real parts to zero, xa = iya we now look for a solution to the extremum of

the effective potential, of the form,

Dabcy
aybyc = C. (C.5)

We find that this ansatz satisfies the equations of motion if

C = −

∣

∣

∣

∣

q0

p0

∣

∣

∣

∣

. (C.6)
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